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The g-fold web map is extended to a volume-preserving map in g dimensions. The gth iterate of
this map is invariant under translations by 27 in any of the coordinate directions. As a consequence,
well-behaved invariant sets that are periodic in R? produce quasiperiodic sets when restricted to a
two-dimensional, irrationally placed subspace identified with the original phase space. A quasilattice
of fixed points is constructed in this manner. It is conjectured that the stochastic web, considered
as the restriction of a g-dimensional periodic set , is itself quasiperiodic.

PACS number(s): 05.45.+b, 61.44.4+p

The stochastic web map [1-3],

TN EA cos2m/q sin2mw/q x
2\y ) =~ \ —sin2xw/q cos2m/q y+asinz
€]

is the Poincaré map of a one-dimensional harmonic oscil-
lator that is given instantaneous kicks ¢ times per nat-
ural period. One of its remarkarkable properties is the
dynamical generation of ordered structure [2]: a single
chaotic orbit of M; is capable of tracing out a weblike
region, the stochastic web, which extends throughout the
phase plane and is endowed, at least approximately, with
the long-range translational and orientational order as-
sociated with a crystal (¢ = 2,3,4,6) or quasicrystal
(¢=5,7,8,...).

In the simplest quasicrystalline case, ¢ = 5, numerical
investigations [2,3] have revealed strong connections with
the best known of all two-dimensional quasicrystals, the
Penrose tiling of the plane by two types of rhombuses
[4]. For example, a Penrose tiling may be superimposed
on the phase portrait of M3 in such a way that the local
features of the latter provide an approximate decoration
of the tiles [2]. Also intriguing are numerical calculations
(3] of the Fourier transform of a large circular portion of
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the stochastic web generated by a single chaotic orbit.
The result is reminiscent of the pointlike diffraction pat-
tern of the Ammann quasilattice [5-8] associated with
the Penrose tiling.

For a < 1, the gth iterate map M{ is asymptotically
close to a Hamiltonian flow, with

gﬂ .
M§(§)=(Z>+a _ggé +0(a?), (2)
xr

q—-1

Hg(m, y) = Zcos (3: cos %Tﬂ + y sin %) . 3)

k=0

The Hamiltonian Hs is obviously quasiperiodic, in the
sense that it has a Fourier expansion with at most a
countable number of wave vectors. As we shall see below,
so is the characteristic function of the level set

{(z,y): |Hz2(z,y) — E| < AE}. (4)
Numerical investigations [2,3] indicate that the region of
the zy plane filled out by a typical chaotic orbit is a
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good approximation to the infinite connected component
of some level set of Hy. The approximation is found to
improve with decreasing a, with an error of order a2. It is
in this sense of a first-order perturbative approximation
that the notion of dynamical generation of quasiperiodic
structure was introduced by Zaslavsky and collaborators
[2]. With the help of higher-order Hamiltonians intro-
duced in [9], the concept can be broadened to arbitrary
order in a, giving a good approximation of the web by
level sets for moderately large values of the parameter,
say a < 0.6.

The present work is aimed at sharpening the above re-
sults. We shall see that there are certain sets of fixed
points of M7 that are not just nth-order approximations
to quasiperiodic structures, but are themselves quasiperi-
odic. This result will be seen to follow from the periodic-
ity property of a g-dimensional map that is an extension
of MJ. Similar reasoning leads to a plausible conjecture
that the stochastic web itself is quasiperiodic.

We begin by reviewing one of the simplest ways [10,11]
of generating a quasiperiodic function in d dimensions.
Consider a real-valued function f(¢) over R?,q > d,
which is periodic with respect to 27 translations in any
of the ¢ coordinate directions:

f(¢+2mv) = f(¢), vezZi,

and suppose that S is a d-dimensional subspace of R
that is irrationally placed; that is, S contains no integer
lattice points 27y, v € Z9 other than the origin. Further,
suppose that f is sufficiently well behaved that it has a
Fourier series expansion

FQ) =D exec. (5)

KEZI

If the restriction of (5) to ¢ € S is well defined, it has the
form

fs(Q) =) exe™®s™, (e, (6)

KEZ

where ¢g is the orthogonal projector onto S. The func-
tion fg is thus, by definition, quasiperiodic over S. This
idea is the underlying principle of the direct projection
method [10-14] of constructing quasiperiodic tilings in
one-, two-, and three-dimensional spaces, a useful tool for
modeling the diffraction patterns of physical quasicrys-
tals.

To utilize the method just described, we need to work
within a mathematical franework that goes beyond con-
tinuous functions. The space of tempered distributions
(class S’ generalized functions [15]) is well suited to our
needs (see [8] for an alternative choice). These are defined
as linear functionals on a function space, and hence are
not necessarily meaningful at an individual point. This
could pose a problem: even if the series (5) converges in
the distributional sense, the restriction (6) may fail to
exist. This is something that will have to be checked in
each individual case.

Before turning to the web map, let us see how the
quasiperiodicity of the Hamiltonian Hy and its level sets
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can be understood in terms of a g-dimensional embedding
[16]. Clearly H; is the restriction of the g-dimensional
periodic function

q—1
Hy(¢) = cos(x (7)
k=0

to the two-dimensional subspace S represented paramet-
rically by

¢(=¢x) =z +yw®, (8)

where x = (z,y), and w1 and w® are mutually orthog-
onal vectors in S, with components

2nk

27k
w,(cl)=cos—;r—, w,ﬁz):sin—-——, k=0,1,...,q—1.

(9)

By the same token, the level sets (4) of H, are restric-
tions to S of the periodic level sets of Hy; with the same
E and AE. For q ¢ {1,2, 3,4, 6}, the subspace S is irra-
tionally placed, and hence the Hamiltonian Hs and the
characteristic functions of its level sets are quasiperiodic
functions whose Fourier coefficients can be obtained from
a knowledge of their g-dimensional extensions in the fun-
damental hypercube,

{¢: &l <m i=0,1,...,9—1}.

The key insight that allows us to associate quasiperi-
odic structures with the web map is the following: the
web map M, is the restriction to the irrationally placed
subspace S of a map M, on R? whose gth iterate is in-
variant under 27 translations in any of the coordinate
directions. Specifically, let P, be the cyclic permutation

map that takes ({o,¢1,...,¢g—1) into (¢1,...,¢q—1,%0)-
The two-dimensional subspace S, which we identify with

the zy plane via (8), is left invariant by P,, and the in-
duced map on S is simply a clockwise rotation by 27 /g:

Py(6(x)) = €[ @ cos X 4y sin 2T,
q q
27 27
— sin— +y cos — |. 10
; q) (10)

Now we are in a position to define the g-dimensional ex-
tension of Ms,

M,(¢) = P, (c+asing0w<2>). (11)
Clearly,
My (§(x)) = £(Ma(x)), (12)
and, for v € Z7,
My(¢ + 2mv) = My(¢) + 27P,(v), (13)

so that, iterating g times, we get the translational invari-
ance
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ME(¢ + 2mv) = M{(C) + 2nv. (14)

The subspace S, which we have identified as the origi-
nal two-dimensional phase space, is only one of an infinite
set of parallel hyperplanes left invariant by MJ. To see
this, we write, for o0 € S,

My(o +n) = Py(o + asin(og + o) w®) + Py(n). (15)
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Spy=n+S={c+n: ocesS}

where, without loss of generality, we assume that 7 is in
S, the (¢ — 2)-dimensional orthogonal complement of
S. The map induced on S,, parametrized by x, is the
two-dimensional area-preserving map

MéQ) = an—l ° an—z ©--+0 Mno’ (16)
It is clear from (15) that MJ leaves invariant each hyper-
plane where
J
~ (x\ [ cos2mw/q sin2w/q z
M. ( Yy > - ( —sin27/q cos2m/q y+asin(z+2) )° a7)
For asymptotically small a, application of M{ approaches a continuous flow:
~ OH, OH,
31,600 + 1) = €60 + 1+ (G209 0 - 00 + 0@, (18)

where
q—1
Hy(x) =) cosln + &(x)]k- (19)
k=0

We see that the flow, while volume preserving in ¢ di-
mensions, is intrinsically two dimensional. Only z and y
are dynamical variables, with the vectors in S, serving
as parameters of the dynamical system.

An interesting example of a quasiperiodic structure
generated by the web map is what we shall call quasi-
centers, namely fixed points x* of M{ such that the gth
iterate map relative to x* is close to M7 in the sense that

(B (x) — ME )|/

is uniformly bounded by a small positive number. From
(16) and (17), it is clear that this can be achieved if all
components of £(x*) are close to integer multiples of 27.
That this is also a necessary condition can also be shown.
We therefore define the set of quasicenters of tolerance €
to be the restriction to S of the g-dimensional periodic
set specified by the fixed point condition

Mg (") = ¢, (20)

supplemented by a cutoff condition that restricts ¢* to
be close to some lattice point 27y, v € Z9.

Observe that Eq. (20), when restricted to the funda-
mental hypercube, determines fixed points x*(7) in each
of the hyperplanes S,, n € S.. Since the origin is an
isolated fixed point in S, and since the fixed-point equa-
tion (20) is analytic in all its variables, there is a unique
solution for |n| < e, for € chosen sufficiently small. The
set defined by (20) and |n| < € is thus part of a smooth,
dimension-(g — 2) manifold E that intersects S in the ori-
gin. Introducing (z,y) coordinates in S, the generalized
function fo(¢), defined by

fol€(x) +n) =P (x—x*"(m)O(e—n),  (21)

for arbitrary £(x) € S and n € S, is well defined in R?
with support on E. It is readily extended to a periodic
generalized function

F©Q) =" fol¢+2mv), (22)

vEZ?

whose restriction to S, fg(x), consists of a quasiperiodic
sum of § functions , each with unit weight. The associ-
ated diffraction pattern is obtained by expanding f(¢) in
a g-dimensional Fourier series, with coefficients

fo= @071 [ @@ (e=ln) expl-in(n + €6 )],
K eZ9. (23)

Restriction to S then gives us a quasiperiodic series of
the type (6).

We now come to a very difficult and subtle question: Is
the stochastic web itself quasiperiodic in the plane? To
even start to answer this, we must define precisely what
we mean by the web. Intuitively, it is useful to think of
the plane as a two-dimensional “foam,” consisting of the
stochastic web and its complement, a countably infinite
set of disjoint “bubbles.” Each “bubble” is a simply con-
nected region bounded by an M{-invariant curve that
is mazimal in the sense that it is not contained in the
interior of any other simple, closed, invariant curve. We
shall refer to such curves simply as boundary curves. Nu-
merical explorations [2,3] indicate that for any positive a
sufficiently small that the origin is a stable fixed point, a
boundary curve surrounding the origin indeed exists. We
define the stochastic web to be the infinitely extended re-
gion exterior to the set (assumed to be nonempty) of all
boundary curves. Note that with this definition the con-
tents of the web are not restricted to chaotic orbits. Also
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to be found within its boundaries are periodic orbits,
cantori, and islands invariant under MJ?, n > 1.

The question about the quasiperiodicity of the stochas-
tic web can now be formulated as follows. Let xweb(X)
be the characteristic function of the web, defined as the
region exterior to all the boundary curves. In the sense
of tempered distributions, does Xweb have a Fourier ex-
pansion with a countable discrete set of wave vectors?

Because of the invariance of MJ under 2 translations,
it is easy to extend xwep to a periodic function in RY.
What is not at all easy is to show that the function thus
obtained is Fourier analyzable. By our definition of the
web, this is entirely a question about the nature of the
boundary. As before, it is useful to slice up ¢-dimensional
space into hyperplanes S, = n+ S, n € S, with S
parametrized by z,y. In each S, we define the web by
means of the maximal simple, closed, invariant curves of
Mf,q). The g-dimensional web is just the union of these
planar webs.

Let us now make some plausible conjectures concerning
the boundary set B, of the g-dimensional stochastic web:

Congecture 1. As a boundary curve between quasiperi-
odicity and chaos, the restriction of By to S, is contin-
uous, but not smooth; its derivative fails to exist at a
countable dense set of points. Nevertheless, the Fourier
transform of Xy} restricted to S, exists as a tempered
distribution.

Conjecture 2. As a function of n € S, B, is contin-
uous almost everywhere, with discontinuities at a dense
set of points. This roughness is a consequence of the
fact that for a given 7 each boundary curve has a ro-
tation number p that changes as one varies . When p
changes from one irrational value to another, say from
a to B, all of the island chains corresponding to rota-
tion numbers between o and ( are either merged with
the web or separated from it. With each merger or sep-
aration comes a discrete jump in the boundary curve. If
the situation is not more complicated than this, the dis-
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continuities will not prevent the Fourier transform from
existing (the problem is analogous to the Fourier series
expansion of a periodic one-dimensional devil’s staircase
with a dense set of discontinuities of bounded variation
on any finite interval).

Conjecture 3. The restriction of the g-dimensional
Fourier expansion to S exists, and hence the stochas-
tic web is quasiperiodic, for all but a countable dense set
of parameter values a. The exceptional parameter values
are those for which the ¢-dimensional web is discontinu-
ous at n = 0, i.e., for which one of the boundary curves is
the unique boundary between the web and the stochastic
layer of a neighboring island chain.

Obviously, the conjectured quasiperiodicity is unlikely
to be proved or disproved very soon. But even without
rigorous confirmation of the quasiperiodicity of the web,
we are not left empty handed. Our general method still
allows us to strengthen the concept of dynamical qua-
sisymmetry generation. As mentioned at the outset, pre-
vious authors [2,3] have used this terminology to refer to
the first-order (in a) approximation of the stochastic web
to a strictly quasiperiodic level set of the Hamiltonian
H,. In Ref. [9] higher-order quasiperiodic Hamiltonians
were introduced that allow an improved approximation
to the web boundary. But replacing the web boundary
in R? piecewise by manifolds of constant energy is only
one of many possible ways of smoothing the boundary
sufficiently to guarantee Fourier analyzability in R? and
quasiperiodicity in the zy plane. Even for relatively large
a, for which chaotic orbits dominate the phase portrait,
it should still be possible to exploit the g-dimensional
embedding technique to find a strictly quasiperiodic ap-
proximation to the boundary of the stochastic region.

I would like to thank G. M. Zaslavsky for helpful dis-
cussions.
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